采购需求

釆购包1:

标的名称: 粒度仪

参数性质	序号	技术参数与性能指标			
组成部分	1	1.组成部分:由测量主机、测量探头及固定烧杯支架、PVC 参考标样、空压机、软件和数据处理系统等部件组成。			
测量探头规格	2	 2.1测量窗口: 蓝宝石 2.2▲最小测量温度-20 ℃,最大测量温度>120 ℃; 2.3测量压力: 不低于或优于 1 MPa; 2.4导线长度: 不低于或优于 5m; 2.5探头材料: 哈氏合金 HC22; 2.6线性测量速度不低于或优于 2m/s; 2.7▲测量的颗粒浓度范围: 0~70%; 2.8 探头外径: ≤19mm; 2.9 探头长度: 不低于或优于 400mm; 2.10 驱动方式: 气动。 			
测量规格	3	3. 1▲测定的粒度范围: 0.5~3000 μm; 3. 2★颗粒不能假定为一种特定形状,采用激光反射原理设计对工艺过程无干扰;每次测量周期,实时给出弦长分布数据;具备实时粘污指数功能,确定暂时粘附在探头窗口的颗粒,并报告覆盖程度,带有粘住颗粒校准功能; 3. 3 无需通过取样、超声、稀释等后处理手段就可在原位体系中实时测量,可以和很多工艺条件实时关联,快速优化工艺条件; 3. 4★探头前端是平整非凹槽一体化设计,能防止卡槽;能够在相对于探头窗口位置不变的距离下,在特定区域内对颗粒进行测量;在每次测量周期,对于给定长度的弦长数,该系统以弦长分布记录数据;在单次测量周期下,能进行			

		全程测量,测量颗粒速率不低于或优于 2m/s;
		3.5 基于探头技术进行测量,能测量单个颗粒,不是基于体
		积测量;
		3.6 每次测量同时提供两种颗粒分布方法: 大粒径模式和小
		粒径模式; 同时追踪小颗粒和大颗粒的粒径变化;
		3.7 采样连续,采样间隔≤2s。
		4.1 在每次测量周期,软件提供基于数量的弦长分布;
		4.2 软件能使用户在单次测量时加注释,这些注释也能在后
		处理时重现;
		4.3能拖拽趋势和弦长分布。
		4.4 同时追踪小颗粒和大颗粒的粒径变化;
		4.5 可导入温度、pH、搅拌、加料等统计趋势; 利用拖拽等
		方式设定颗粒分布的终点;
		4.6 保存数据分析组,并可从之前实验暂停的地方开始进行
		分析;
		4.7实时清晰地显示颗粒的生长变化过程等图像信息;
		4.8 通过实验模板确保重复批次条件;
软件要求	4	4.9 Excel 中的数据能拷贝和粘贴至软件中;
		4.10 一键生成完整的报表;
		4.11 完全兼容动力学模拟放大软件指导快速优化生产工
		艺,软件自带实验系统所有数据;
		 4.12★软件基于通用平台,并能与其他多种仪器进行实时
		│ │无缝通讯和数据关联共享,包括但不局限于以下仪器:自
		│ │ 动化反应器、反应量热仪、实时在线取样分析系统、实时
		 在线反应分析系统、实时在线拉曼分析系统,智能在线液
		相分析系统、在线动态颗粒成像分析仪等,如可以自动测
		 结晶介稳区等结晶工艺所需最基础数据。
		4.13 和多个实验条件参数相关联,便于实时的去优化整个
		处理工艺过程;

技术应用 及服务支持要求	5 5. 国内能提供原厂应用技术支持。	
--------------	---------------------	--